
1 Terminology and Definition

class terminology definition properties*

field property
conservative

∮
C
E · dℓ = 0

∇×E = 0
E = −∇V

=irrotional/potential field

solenoidal

∮
S
E · ds = 0

∇ ·E = 0
∇2V = 0

=source-less/tubular

uniquely defined both ∇× and ∇· defined

electric field
(conservative)

electrostatic field D = εE = ε0E+P ∇2V = −ρv

ε
steady current field J = σE ∇2V = 0

induced field Eind = −∂A
∂t non-conservative, tubular

magnetic field
(source-less) magnetostatic field H = B

µ = B
µ0

−M ∇2A = −µ0J, ∇2Um = 0

time-varying
electric&magnetic field E = −∇V − ∂A

∂t
interdependent

plane waves
plane wave Ê × Ĥ = k̂ far from radiating source

uniform plane wave E(x), H(x) uniform borderless media
TEM orthogonal

guided waves

TE mode E0z = 0 TE10, TE20, TE01, TE11 . . .
TM mode H0z = 0 TM11, TM21, . . .

degenerated modes TEmn and TMmn

TEM k2c = γ2 + k2 = 0 E,H ⊥ k̂

network
reciprocal [µ], [ε], [Z], [Y ], [S] symmetric

lossless [Z], [Y ] purely imaginary, [S]T [S]∗ = [U ]
no R or G, reflection = incidence

port Vi = V +
i + V −

i incidence+reflection

2 Time-Invariant Fields

2.1 Electrostatics
formulas form expression

Coulomb’s law F12 = 1
4πε

q1q2
r212

r̂12

electric field def E⃗ =
∑

1
4πε

qi
r2 r̂

electric potential
def E = −∇V
cal. ∆Vab = −

∫ a

b
E · dl

point Va = q
4πεr

2.2 Steady electric current
formulas form expression

current density def J = ρv = σE
current def I =

∫
S
J · ds =

∫
Js · dℓ

Equation of Continuity
diff ∇ · J = −∂ρv

∂t = 0

int
∮
S
J · ds =

∫
V
−∂ρv

∂t dv = 0
homo medium ∇ ·E = 0 ⇔ ∇2V = 0

Ohm’s law diff J = σE
low freq. V = RI

Joule’s law
diff P = J ·E
int P =

∫
V
J ·Edv

low freq. P = IV
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2.3 Magnetostatics
formulas form expression

force dF = Idℓ×B
magnetic dipole approx

magnetic moment def m = IAn̂ = NIA
magnetic torque def T = m×B

Biot-Savart law dB = µI
4πr2 dℓ× r̂ = µJ×r̂

4πr2 dv

vector potential

eq. ∇2A = −µ0J
cal. A = µ

4π

∫
C

Jdℓ
r = µ

4π

∫
V

Jdv
r

cal.B B = ∇×A
ΦB =

∮
C
A · dℓ

scalar potential
(current-less)

def H = −∇Um

mmf Um(P ) =
∫∞
P

H · dℓ
eq. ∇2Um = 0

2.4 Charge/current distributions and their fields

wire E = λ
2πεr B = µI

2πr

infinite plane E = σ
2ε B = µi

2

long solenoid Bin = µnI

toroid Bin = µNi
2πr

ring E = Qx
4πε(x2+R2)3/2

B = µIR2

2(R2+x2)3/2

disk E = σ
2ε

(
1− z√

z2+R2

)
3 Time-Varying Fields
using FT, we have

E(r, t) = Re{[Ẽx(r)a⃗x + Ẽy(r)a⃗y + Ẽz(r)a⃗z]e
jωt}

= Re[Ẽ(r)ejωt]

where Ẽ(r) = Ẽx(r)a⃗x + Ẽy(r)a⃗y + Ẽz(r)a⃗z Complex amplitude and complex vector depend on
position r and are time-dependent; Transient field vector and components are real functions.

3.1 Summary: Maxwell’s equations

electric Gauss’s law diff ∇ ·D = ρv
int

∮
S
D · ds =

∫
V
ρvdv

magnetic Gauss’s law diff ∇ ·B = 0
int

∮
S
B · ds = 0

Ampere’s loop law
diff ∇×H = Jv +

∂D
∂t

int
∮
C
H · dℓ =

∫
S
(Jv +

∂D
∂t ) · ds

FT ∇× H̃ = J̃v + jωD̃

Faraday’s law
(induced + motional emf)

diff ∇×E = −∂B
∂t +∇× (v ×B)

int E =
∮
C
E · dℓ = − d

dt

∫
S
B · ds

= −
∫
S

∂B
∂t · ds+

∮
C
(v ×B) · dℓ

FT ∇×E = −jωB̃
Lorentz force F = q(E+ v ×B)

3.2 Constitutive relationships
Constitutive equations (linear, homogeneous, and isotropic medium) are given in section1. How to
calculate (equivalent) bound charge/current?

polarized
dielectric

V (P ) = 1
4πε0

(∮
S

ρsb

r ds+
∫
V

ρvb

r dv
) S, Q ρsb = P · n̂

V, Q ρvb = −∇ ·P
magnetized
material A = µ0

4π (
∫
V

Jmv

R dv +
∫
S

Jms

R ds)
S, I Jms = M× n̂
V, I Jm = ∇×M

eq. magnetic
charge Um = 1

4π

(∮
S

ρms

r ds+
∫
V

ρmv

r dv
) S, Q ρms = M · n̂

V, Q ρm = −∇ ·M
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3.3 Boundary conditions
ANALOGY D&J

displacements D J free charge
related to electrostatic steady current
definition D = εE J = σE

boundary conditions Dn1 = Dn2 Jn1 = Jn2
ρs = Dn1 −Dn2

= Jn(
ε1
σ1

− ε2
σ2
)

Et1 = Et2

MAGNETIC FIELD&POTENTIAL
magnetic H Um,A free current

boundary conditions Ht1 = Ht2 continuous Js = Ht1 −Ht2

= n̂× (H1 −H2)Bn1 = Bn2

ELECTRIC-MAGNETIC COUNTERPARTS
flux density D flux intensity B

field intensity E field intensity H

polarization P magnetization M =
∑

m
∆v

When is there free charge/current at the boundary?

Perfect Conductor (σ = ∞, ε = 0) inside, electromagnetic fields E = B = 0; on its surface, both
ρs and Js can exist, E ∥ n̂ and H ⊥ n̂.

A Conductor (σ < ∞, ε = 0) inside, time-varying fields can exist; hence Js = 0, but ρs can exist
between a conductor and a perfect dielectric.

Two Perfect Dielectric (σ = 0, ε) Js = 0. However, ρs = 0 unless the charge is physically placed
at the interface.

Ferromagnetic (µ = ∞)

3.4 Energy&Work

energy densities
E

W = q∆V =
∫
V

1
2ρvV dv

we =
1
2D ·E = 1

2εE
2

B
W =

∑
1
2IiΨi =

1
2

∫
V
A · Jdv

wm = 1
2B ·H = 1

2µH
2

Poynting’s theorem
(energy conservation)

diff ∇ · (E×H) + J ·E+H · ∂B
∂t +E · ∂D

∂t = 0
in homogeneous, isotropic medium ⇓

int
∮
S
S · ds+

∫
V
J ·E dv + ∂

∂t

∫
V
(wm + we) dv = 0

FT
⟨S⟩ =

∫
T
Sdt = ℜ

{
1
2 Ẽ× H̃∗

}
wm = µ

4 |H̃|2 = LI2

4 , we =
ε
4 |Ẽ|2 = CV 2

4

∇ · S̃+ 1
2 Ẽ · J̃∗ + jω( 12B̃ · H̃∗ − 1

2 Ẽ · D̃∗) = 0
More about Poynting’s theorem:

1. Poynting vector S = E×H, represents the instantaneous EM power crossing the closed
surface S. If this integral is positive, the net power is flowing out of the volume; flowing in if
negative.

2. E · J represents the power supplied to the charged particles by the electric field. When positive,
the field is doing work. In a conductor, J = σE, this term represents power dissipation or
ohmic power loss (Joule loss, mostly heat).

3. −∂w
∂t represents the change rate of stored magnetic/electric energy. For static field this term

equals 0.

4 Solving for potential
for static fields,
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Poisson eq ∇2V = −ρ
ε ∇2A = −µJ

Laplace eq ∇2V = 0 ∇2Um = 0

cartesian U(x, y, z) =

N∑
n=1

Xn(x)Yn(y)Zn(z)

cylindrical

1
ρ

∂
∂ρ

(
ρ∂V

∂ϕ

)
+ 1

ρ2
∂2V
∂ϕ2 + ∂2V

∂z2 = 0

U = R (ρ) Φ (ϕ) = (A0+B0 ln ρ)+

∞∑
n=1

(Anρ
n +Bnρ

−n)(Cn sinnϕ+Dn cosnϕ)

spherical

1
r2 · ∂

∂r

(
r2 ∂U

∂r

)
+ 1

r2 sin θ · ∂
∂θ

(
sin θ ∂U

∂θ

)
+ 1

r2 sin2 θ
· ∂2U
∂φ2 = 0

U(r, θ) =

∞∑
n=0

(Anr
n +Bnr

−(n+1))Pn(cos θ), where |Pn (cos θ)|2 =
2

2n+ 1

for time-varying fields,
transient complex

Dynamic Potential B = ∇×A
E = −∇V − ∂A

∂t

B = ∇×A

E = −∇(∇·A)
jωµε − jωA

Lorentz gauge ∇ ·A = −µε∂V
∂t ∇ ·A = −jωµεV

Darren Bell eq ∇2V − µε∂2V
∂t2 = −ρ

ε

∇2A− µε∂2A
∂t2 = −µJ

∇2V + ω2µεV = −ρ
ε

∇2A+ ω2µεA = −µJ

Helmholtz Equation
(source-less region)

∇2Ē = µσ ∂E
∂t + µε∂2E

∂t2

∇2H = µσ ∂H
∂t + µε∂2H

∂t2

∇2E⃗ + k2E⃗ = 0

∇2H⃗ + k2H⃗ = 0
k2 = ωµ(ωε− jσ)

5 EM Waves

5.1 Plane waves
when σ = 0 (lossless) we have k = β =

√
ω2µε

wave equation

d2Ex

dz2 = µε∂2Ēx

∂t2
d2Hy

dz2 = µε
∂2Hy

∂t2

E = E0e
−jkz

Ẽx(z) = Exfe
−j(kz−θxf ) + Exbe

j(kz+θxb)

Ex(z, t) = Exf cos(ωt− kz + θxf ) + Exb cos(ωt+ kz + θxb)

orthogonality Ê × Ĥ = k̂,H = k×E
ωµ ,E = H×k

ωε−jσ

forward&backward
Ex(z, t) = E+

x (z, t) + E−
x (z, t)

Hy(z, t) = H+
y (z, t) +H−

y (z, t)
E+

x

H+
y

=
√
µ/ε ≈ η,

E−
x

H−
y

= −
√
µ/ε ≈ −η

velocity k = 2π
λ k̂ =

√
ω2µεk̂, v = 1√

µε

energy
we =

1
2ε(E

+
x )2 = 1

2µ(H
+
y )2 = wm

S+(z, t) = vwk̂ = v(we + wm)ẑ, ⟨S⟩ = |E|2
2ωµ k̂ = E2

2η k̂

when σ ̸= 0 (with loss), k = β − jα =
√
ω2µε− jωµσ, intrinsic/ wave impedance η = ωµ

k =

√
µ/ε√

1−j σ
ωε

5.2 Polarization
linearly polarized Ex, Ey in phase (θx = θy). E is sinusoidal

elliptically polarized right-handed, Ex leads; left-handed, Ex lags. E is spiral

circularly polarized right-handed, Ex leads by π/2; left-handed, Ex lags by π/2. E is spiral

5.3 Dispersion
To E,H at high freq., media parameters change, P,M and charge movement lag. The loss of a
medium is measured by loss tangent

tan δe =
ε′′

ε′
, ε = ε′ − jε′′

tan δm =
µ′′

µ′ , µ = µ′ − jµ′′
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5.4 Velocities
In dispersive media (where the phase velocity varies with freq.), the group velocity may differ from
the phase velocity.

phase velocity group velocity
of a point of const. phase on the
wave; of carrier

of the envelope of the wave; of en-
ergy propagation; of modulation

vp = ω
β vg = dω

dβ ≤ vp
vpvg = 1

µε = c2//vp = vg when no dispersion (e.g. in dielectric)

5.5 Guided waves
For ideal conductors, power is transmitted via fields and not through the conductors themselves; for
loss conditions, power in the conductors is lost as heat. classification: TEM-type lines (coaxial
cable, microstrip line, stripline), non-TEM lines (waveguides)

rectangular waveguide single conductor -> no TEM mode The mode is cutoff when k = kmn
c

kmn
c =

√
(mπ

a )2 + (nπb )2 Ez = 0

fmn
c = 1

2
√
εµ

√
(ma )

2 + (nb )
2 Hz = A cos mπx

a cos nπy
b e−jβz

β, kz =
√
k2 − k2c Ex = jωµnπ

k2
cb

A cos mπx
a sin nπy

b e−jβz

λg = 2π
β , vp = ω

β Ey = −jωµmπ
k2
ca

A sin mπx
a cos nπy

b e−jβz

ZTE = kη
β Hx = jβmπ

k2
ca

A sin mπx
a cos nπy

b e−jβz

ZTM = βη
k Hy = jβnπ

k2
cb

A cos mπx
a sin nπy

b e−jβz

cavity resonator When a mode (standing wave) can exist at the resonant frequency, it traps
energy at that frequency.

fmnp =
1

2
√
εµ

√
(
m

a
)2 + (

n

b
)2 + (

p

d
)2

5



6 Transmission Line Theory and Network Analysis

 

intrinsic impedance η =
√
µ/ε of medium material, equals Zω for plane waves

wave impedance Zω = Et/Ht, e.g. ZTEM, ZTM, ZTE

characteristic impedance Z0 = V +/I+, unique for TEM wave, varyingly for TE and TM waves

short circuit: V +
i + V −

i = 0; open circuit: I+i + I−i = 0
Zii input impedance seen looking into port i
Sii = Γi, Sij = Tij when matched

P+ =
1

2
V +I+∗, Pavg =

1

2
ℜ
{
[V ]T [I]∗

}
6.1 Scattering Matrix: Incident and Reflected Voltage
At high freq. measurements involve the magnitude and phase of a wave traveling in a given
direction or of a standing wave.

[V −] = [S][V +], [S] = ([Z] + [U ])−1([Z]− [U ])

Sij =
V −
i

V +
j

|Γ=0: driving port j with an incident V +
j , all other ports matched to avoid reflections

(V + = 0), measure the reflected wave amplitude V −
i at port i
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7 Communication Systems

7.1 Antennas
A transmitting antenna is a device that converts a guided electromagnetic wave on a transmission
line into a plane wave propagating in free space. Antennas are bi-directional and can be used for
both transmit and receive functions. Near field: reactive, depends on r; far field: radiating,
independent of r.

bandwidth BW V SWR < 1.5

far-field distance Rff = 2D2

λ

radiation pattern
(far field, normalised)

field F (θ, ϕ) = |E(θ,ϕ)|
Emax

power P (θ, ϕ) = S(θ,ϕ)
Smax

= |F (θ, ϕ)|2

E = (θ̂Fθ + ϕ̂Fϕ)e
−jk0r/r, η0 = Eθ/Hϕ = −Eϕ/Hθ

Prad =
∮
S
U(θ, ϕ)ds, Pr = GrAeffSavg, Savg = GtPt

4πr2

directivity main beam
average D(θ, ϕ) = Umax

Uavg
= 4πUmax

Prad
≤ 4πA

λ2

radiation efficiency resistive loss ηrad = Prad

Pin
= 1− Ploss

Pin

gain directional
isotropic rad. G = ηradD

effective aperture area PL

Pin
Aeff (max) = λ2

4πD

antenna noise temp. noise delivered TA = ηradTB + (1− ηrad)TP

(SNR) G/T (dB) = 10 log (G/TA)dB/K

7.2 Noise
thermal noise(thermal vibration of bound charges), shot noise (random fluctuations of charge
carriers), flicker noise(1/f noise, varies inversely with frequency), plasma noise, quantum noise

Pn =
V 2
n

4R
= kT (BW ), Teq =

No

Gk(BW )
, NF =

Si/Ni

So/No
= 1 +

Te

290K

T = Teq1 +
Teq2

G1
+

Teq3

G1G2
+ · · · , NF = NF1 +

NF2 − 1

G1
+

NF3

G1G2
+ · · ·

when matched G21 = |S21|2, NF = 1 + 1−G21

G21

T
T0

7.3 Link Budget
transmitted antenna line loss Lt = α

path loss L0(dB) = 20 log (4πr/λ) > 0
atmosphere attenuation LA

receive antenna line loss Lr

receive power Pr(dBm) = (Pt +Gt +Gr)− (Lt + L0 + Lr)
impedance mismatch loss Limp(dB) = −10 log(1− |Γ|2) ≥ 0

link margin LM = Pr − Pr(mim)

The Friis Formula For long distance comm, wireless radio links better than wired links TL.

Pr = PtGtGr

(
λ

4πr

)2

, Effective Isotropic Radiated Power = PtGt

For given freq., range, Gr, the received power is proportional to EIRP of the transmitter,
which can only be increased by increasing Pt or Gt.

TTL+r = (Lt − 1)TP + LtTr,

So

No
=

Si

k(BW )(ηradTB + (1− ηrad)TP + (Lt − 1)TP + LtTr)
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