1 Terminology and Definition

class	terminology	definition	properties*	
field property	conservative	$ \oint_C \mathbf{E} \cdot d\ell = 0 $ $ \nabla \times \mathbf{E} = 0 $ $ \mathbf{E} = -\nabla V $	=irrotional/potential field	
	solenoidal	$ \oint_{S} \mathbf{E} \cdot d\mathbf{s} = 0 $ $ \nabla \cdot \mathbf{E} = 0 $ $ \nabla^{2} V = 0 $	=source-less/tubular	
	uniquely defined	both ∇	\vee and $\nabla \cdot$ defined	
electric field	electrostatic field	$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 \mathbf{E} + \mathbf{P}$	$ \nabla^2 V = -\frac{\rho_v}{\varepsilon} \nabla^2 V = 0 $	
	steady current field	$\mathbf{J} = \sigma \mathbf{E}$	$\nabla^2 V = 0$	
(conservative)	induced field	$\mathbf{E}_{\mathrm{ind}} = -rac{\partial \mathbf{A}}{\partial t}$	non-conservative, tubular	
magnetic field (source-less)	magnetostatic field	$\mathbf{H} = \frac{\mathbf{B}}{\mu} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$	$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}, \nabla^2 U_m = 0$	
	time-varying electric&magnetic field		interdependent	
	plane wave	$\hat{E} \times \hat{H} = \hat{k}$	far from radiating source	
plane waves	uniform plane wave	E(x), H(x)	uniform borderless media	
	TEM		orthogonal	
	TE mode	$E_{0z} = 0$	$TE_{10}, TE_{20}, TE_{01}, TE_{11} \dots$	
guided waves	TM mode	$H_{0z} = 0$	TM_{11}, TM_{21}, \dots	
guided waves	degenerated modes	TE_{mn} and TM_{mn}		
	TEM	$k_c^2 = \gamma^2 + k^2 = 0$	$\mathbf{E},\mathbf{H}\perp\hat{k}$	
	reciprocal	$[\mu], [arepsilon], [Z],$	[,[Y],[S]] symmetric	
network	lossless	[Z], [Y] purely in	maginary, $[S]^T[S]^* = [U]$ reflection = incidence	
	port	$V_i = V_i^+ + V_i^-$	incidence+reflection	

2 Time-Invariant Fields

2.1 Electrostatics

formulas	form	expression
Coulomb's law		$\mathbf{F}_{12} = \frac{1}{4\pi\varepsilon} \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$
electric field	def	$ec{\mathbf{E}} = \sum rac{1}{4\piarepsilon} rac{q_i}{r^2} \hat{r}$
	def	$\mathbf{E} = -\nabla V$
electric potential	cal.	$\Delta V_{ab} = -\int_b^a \mathbf{E} \cdot \mathrm{d}l$
	point	$V_a = \frac{q}{4\pi\varepsilon r}$

2.2 Steady electric current

formulas	form	expression	
current density	def	$\mathbf{J} = \rho \mathbf{v} = \sigma \mathbf{E}$	
current	def	$I = \int_{S} \mathbf{J} \cdot d\mathbf{s} = \int \mathbf{J_s} \cdot d\ell$	
	diff	$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} = 0$	
Equation of Continuity	int	$\oint_{S} \mathbf{J} \cdot d\mathbf{s} = \int_{V} -\frac{\partial \rho_{v}}{\partial t} dv = 0$	
	homo medium	$\nabla \cdot \mathbf{E} = 0 \Leftrightarrow \nabla^2 V = 0$	
Ohm's law	diff	$\mathbf{J} = \sigma \mathbf{E}$	
Omn s law	low freq.	V = RI	
	diff	$P = \mathbf{J} \cdot \mathbf{E}$	
Joule's law	int	$P = \int_{V} \mathbf{J} \cdot \mathbf{E} \mathrm{d}v$	
	low freq.	P = IV	

2.3 Magnetostatics

formulas	form	expression
force		$d\mathbf{F} = Id\ell \times \mathbf{B}$
magnetic dipole	approx	
magnetic moment	def	$\mathbf{m} = IA\hat{n} = NI\mathbf{A}$
magnetic torque	def	$\mathbf{T} = \mathbf{m} \times \mathbf{B}$
Biot-Savart law		$d\mathbf{B} = \frac{\mu I}{4\pi r^2} d\ell \times \hat{r} = \frac{\mu \mathbf{J} \times \hat{r}}{4\pi r^2} dv$
	eq.	$ abla^2 \mathbf{A} = -\mu_0 \mathbf{J}$
vector potential	cal.	$\mathbf{A} = \frac{\mu}{4\pi} \int_{C} \frac{\mathbf{J} \mathbf{d} \ell}{r} = \frac{\mu}{4\pi} \int_{V} \frac{\mathbf{J} \mathbf{d} v}{r}$ $\mathbf{B} = \nabla \times \mathbf{A}$
vector potential	$cal.\mathbf{B}$	$\mathbf{B} = abla imes \mathbf{A}$
		$\Phi_B = \oint_C \mathbf{A} \cdot \mathrm{d}\ell$
scalar potential	def	$\mathbf{H} = -\nabla U_m$
(current-less)	mmf	$U_m(P) = \int_P^\infty \mathbf{H} \cdot \mathrm{d}\ell$
(current-less)	eq.	$\nabla^2 U_m = 0$

2.4 Charge/current distributions and their fields

wire	$E = \frac{\lambda}{2\pi\varepsilon r}$	$B = \frac{\mu I}{2\pi r}$
infinite plane	$E = \frac{\sigma}{2\varepsilon}$	$B = \frac{\mu i}{2}$
long solenoid		$B_{in} = \mu nI$
toroid		$B_{in} = \frac{\mu Ni}{2\pi r}$
ring	$E = \frac{Qx}{4\pi\varepsilon(x^2 + R^2)^{3/2}}$	$B = \frac{\mu I R^2}{2(R^2 + x^2)^{3/2}}$
disk	$E = \frac{\sigma}{2\varepsilon} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right)$	

3 Time-Varying Fields

using FT, we have

$$\mathbf{E}(r,t) = \operatorname{Re}\{ [\tilde{E}_x(r)\vec{\mathbf{a}}_x + \tilde{E}_y(r)\vec{\mathbf{a}}_y + \tilde{E}_z(r)\vec{\mathbf{a}}_z]e^{\mathrm{j}\omega t} \}$$
$$= \operatorname{Re}[\tilde{\mathbf{E}}(r)e^{\mathrm{j}\omega t}]$$

where $\tilde{\mathbf{E}}(r) = \tilde{E}_x(r)\vec{\mathbf{a}}_x + \tilde{E}_y(r)\vec{\mathbf{a}}_y + \tilde{E}_z(r)\vec{\mathbf{a}}_z$ Complex amplitude and complex vector depend on position r and are time-dependent; Transient field vector and components are real functions.

3.1 Summary: Maxwell's equations

electric Gauss's law	diff	$ abla \cdot \mathbf{D} = ho_v$
electric Gauss's law	int	$\oint_S D \cdot d\mathbf{s} = \int_V \rho_v dv$
magnetic Gauss's law	diff	$\nabla \cdot \mathbf{B} = 0$
magnetic Gauss's law	int	$\oint_S \mathbf{B} \cdot d\mathbf{s} = 0$
	diff	$\nabla imes \mathbf{H} = \mathbf{J}_v + \frac{\partial \mathbf{D}}{\partial t}$
Ampere's loop law	int	$\oint_C \mathbf{H} \cdot d\ell = \int_S \left(\mathbf{J}_v + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{s}$
	FT	$ abla imes ilde{\mathbf{H}} = ilde{\mathbf{J}}_v + \mathrm{j}\omega ilde{\mathbf{D}}$
	diff	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} + \nabla \times (\mathbf{v} \times \mathbf{B})$
Faraday's law	int	$\mathscr{E} = \oint_C \mathbf{E} \cdot d\ell = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{s}$
$\pmod{+ \text{motional emf}}$	1110	$=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s} + \oint_{C} (\mathbf{v} \times \mathbf{B}) \cdot d\ell$
	FT	$ abla imes \mathbf{E} = -\mathrm{j}\omega ilde{\mathbf{B}}$
Lorentz force		$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

3.2 Constitutive relationships

Constitutive equations (linear, homogeneous, and isotropic medium) are given in section1. How to calculate (equivalent) bound charge/current?

· •	, , , , , , , , , , , , , , , , , , , ,		
polarized	$V(P) = \frac{1}{4\pi\varepsilon_0} \left(\oint_S \frac{\rho_{sb}}{r} ds + \int_V \frac{\rho_{vb}}{r} dv \right)$	S, Q	$\rho_{sb} = \mathbf{P} \cdot \hat{n}$
dielectric	$V(T) = \frac{1}{4\pi\varepsilon_0} \left(\frac{y_S}{y_S} \right) \left(\frac{1}{r} \right) \left($	V, Q	$\rho_{vb} = -\nabla \cdot \mathbf{P}$
magnetized	$\mathbf{A} = \mu_0 \left(\int \mathbf{J}_{mv} \mathbf{J}_{nv} + \int \mathbf{J}_{ms} \mathbf{J}_{nv} \right)$	S, I	$\mathbf{J}_{ms} = \mathbf{M} \times \hat{n}$
material	$\mathbf{A} = \frac{\mu_0}{4\pi} \left(\int_V \frac{\mathbf{J}_{mv}}{R} \mathrm{d}v + \int_S \frac{\mathbf{J}_{ms}}{R} \mathrm{d}s \right)$	V, I	$\mathbf{J}_m = abla imes \mathbf{M}$
eq. magnetic	$U_m = \frac{1}{4\pi} \left(\oint_S \frac{\rho_{ms}}{r} ds + \int_V \frac{\rho_{mv}}{r} dv \right)$	S, Q	$\rho_{ms} = \mathbf{M} \cdot \hat{n}$
charge	$U_m = \frac{1}{4\pi} \left(\mathcal{Y}_S - \frac{1}{r} ds + \int_V - \frac{1}{r} dv \right)$	V, Q	$\rho_m = -\nabla \cdot \mathbf{M}$

3.3 Boundary conditions

ANALOGY D&J				
displacements	D	J	free charge	
related to	electrostatic	steady current		
definition	$\mathbf{D} = \varepsilon \mathbf{E}$	$J = \sigma E$		
boundary conditions	$D_{n1} = D_{n2}$	$J_{n1} = J_{n2}$	$\rho_s = D_{n1} - D_{n2}$ $= J_n(\frac{\varepsilon_1}{\sigma_1} - \frac{\varepsilon_2}{\sigma_2})$	
	E_{t1}	$=E_{t2}$		
MA	GNETIC FIEL	D&POTENTIAI		
magnetic	H	$\mathbf{U_m}, \mathbf{A}$	free current	
boundary conditions	$H_{t1} = H_{t2}$	continuous	$\mathbf{J}_s = H_{t1} - H_{t2}$	
boundary conditions	$B_{n1} = B_{n2}$		$= \hat{n} \times (\mathbf{H}_1 - \mathbf{H}_2)$	
ELECTRIC-MAGNETIC COUNTERPARTS				
flux density	D	flux intensity	В	
field intensity	E	field intensity	H	
polarization	P	magnetization	$\mathbf{M} = \frac{\sum \mathbf{m}}{\Delta v}$	

When is there free charge/current at the boundary?

Perfect Conductor ($\sigma = \infty, \varepsilon = 0$) inside, electromagnetic fields $\mathbf{E} = \mathbf{B} = 0$; on its surface, both ρ_s and J_s can exist, $\mathbf{E} \parallel \hat{n}$ and $\mathbf{H} \perp \hat{n}$.

A Conductor ($\sigma < \infty, \varepsilon = 0$) inside, time-varying fields can exist; hence $J_s = 0$, but ρ_s can exist between a conductor and a perfect dielectric.

Two Perfect Dielectric ($\sigma = 0, \varepsilon$) $J_s = 0$. However, $\rho_s = 0$ unless the charge is physically placed at the interface.

Ferromagnetic $(\mu = \infty)$

3.4 Energy&Work

energy densities	E	$W = q\Delta V = \int_{V} \frac{1}{2} \rho_{v} V dv$ $w_{e} = \frac{1}{2} \mathbf{D} \cdot \mathbf{E} = \frac{1}{2} \varepsilon E^{2}$		
chergy densities	В	$W = \sum_{1} \frac{1}{2} \tilde{I}_{i} \Psi_{i} = \frac{1}{2} \int_{V} A \cdot \mathbf{J} dv$ $w_{m} = \frac{1}{2} \mathbf{B} \cdot \mathbf{H} = \frac{1}{2} \mu H^{2}$		
	diff	$\nabla \cdot (\mathbf{E} \times \mathbf{H}) + \mathbf{J} \cdot \mathbf{E} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} + \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} = 0$		
Poynting's theorem	in homogeneous, isotropic medium \downarrow			
(energy conservation)	int	$\oint_{S} \mathbf{S} \cdot d\mathbf{s} + \int_{V} \mathbf{J} \cdot \mathbf{E} dv + \frac{\partial}{\partial t} \int_{V} (w_{m} + w_{e}) dv = 0$		
(energy conservation)		$\langle \mathbf{S} angle = \int_T \mathbf{S} \mathrm{d}t = \Re \left\{ rac{1}{2} ilde{\mathbf{E}} imes ilde{\mathbf{H}}^* ight\}$		
	FT	$w_m = \frac{\mu}{4} \tilde{\mathbf{H}} ^2 = \frac{LI^2}{4}, w_e = \frac{\varepsilon}{4} \tilde{\mathbf{E}} ^2 = \frac{CV^2}{4}$		
		$\nabla \cdot \tilde{\mathbf{S}} + \frac{1}{2}\tilde{\mathbf{E}} \cdot \tilde{\mathbf{J}}^* + j\omega(\frac{1}{2}\tilde{\mathbf{B}} \cdot \tilde{\mathbf{H}}^* - \frac{1}{2}\tilde{\mathbf{E}} \cdot \tilde{\mathbf{D}}^*) = 0$		

More about Poynting's theorem:

- 1. Poynting vector $\mathbf{S} = \mathbf{E} \times \mathbf{H}$, represents the instantaneous EM power crossing the closed surface S. If this integral is positive, the net power is flowing out of the volume; flowing in if negative.
- 2. $\mathbf{E} \cdot \mathbf{J}$ represents the power supplied to the charged particles by the electric field. When positive, the field is doing work. In a conductor, $\mathbf{J} = \sigma \mathbf{E}$, this term represents power dissipation or ohmic power loss (Joule loss, mostly heat).
- 3. $-\frac{\partial w}{\partial t}$ represents the change rate of stored magnetic/electric energy. For static field this term equals 0.

4 Solving for potential

for static fields,

Poisson eq	$\nabla^2 V = -\frac{\rho}{\varepsilon} \qquad \qquad \nabla^2 \mathbf{A} = -\mu \mathbf{J}$	
Laplace eq	$\nabla^2 V = 0 \qquad \qquad \nabla^2 U_m = 0$	
cartesian	$U(x, y, z) = \sum_{n=1}^{N} X_n(x) Y_n(y) Z_n(z)$	
cylindrical	$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \phi} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0$ $U = R(\rho) \Phi(\phi) = (A_0 + B_0 \ln \rho) + \sum_{n=1}^{\infty} (A_n \rho^n + B_n \rho^{-n}) (C_n \sin n\phi + D_n \cot n\phi)$	$(\cos n\phi)$
spherical	$\frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial U}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \cdot \frac{\partial^2 U}{\partial \varphi^2} = 0$ $U(r, \theta) = \sum_{n=0}^{\infty} (A_n r^n + B_n r^{-(n+1)}) P_n(\cos \theta), \text{ where } P_n(\cos \theta) ^2 = \frac{2}{2n+1}$	1

for time-varying fields,

	transient	complex
D	$\mathbf{B} = abla imes \mathbf{A}$	$\mathbf{B} = \nabla \times \mathbf{A}$
Dynamic Potential	$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$	$\mathbf{E} = -\frac{\nabla(\nabla \cdot \mathbf{A})}{\mathrm{j}\omega\mu\varepsilon} - \mathrm{j}\omega\mathbf{A}$
Lorentz gauge	$\nabla \cdot \mathbf{A} = -\mu \varepsilon \frac{\partial V}{\partial t}$	$\nabla \cdot \mathbf{A} = -\mathrm{j}\omega\mu\varepsilon V$
Damen Dall as	$\nabla^2 V - \mu \varepsilon \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon}$	$\nabla^2 V + \omega^2 \mu \varepsilon V = -\frac{\rho}{\varepsilon}$
Darren Bell eq	$\nabla^2 \mathbf{A} - \mu \varepsilon \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu \mathbf{J}$	$\nabla^2 \mathbf{A} + \omega^2 \mu \varepsilon \mathbf{A} = -\mu \mathbf{J}$
Helmholtz Equation	$\nabla^2 \bar{E} = \mu \sigma \frac{\partial \mathbf{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$	$\nabla^2 \vec{E} + k^2 \vec{E} = 0$
(source-less region)		$\nabla^2 \vec{H} + k^2 \vec{H} = 0$
(Source-less region)	$\nabla^2 \mathbf{H} = \mu \sigma \frac{\partial \mathbf{H}}{\partial t} + \mu \varepsilon \frac{\partial^2 \mathbf{H}}{\partial t^2}$	$k^2 = \omega \mu (\omega \varepsilon - j\sigma)$

5 EM Waves

5.1 Plane waves

when $\sigma=0$ (lossless) we have $k=\beta=\sqrt{\omega^2\mu\varepsilon}$

` ,	· • • • • • • • • • • • • • • • • • • •		
wave equation	$\begin{vmatrix} \frac{\mathrm{d}^2 E_x}{\mathrm{d}z^2} = \mu \varepsilon \frac{\partial^2 \bar{E}_x}{\partial t^2} \\ \frac{\mathrm{d}^2 H_y}{\mathrm{d}z^2} = \mu \varepsilon \frac{\partial^2 H_y}{\partial t^2} \end{vmatrix} \tilde{E}_x(z) = E_{xf} e^{-j(kz - \theta_{xf})} + E_{xb} e^{j(kz + \theta_{xb})} \\ E_x(z, t) = E_{xf} \cos(\omega t - kz + \theta_{xf}) + E_{xb} \cos(\omega t + kz + \theta_{xb})$		
orthogonality	$\hat{E} \times \hat{H} = \hat{k}, \mathbf{H} = \frac{\mathbf{k} \times \mathbf{E}}{\omega \mu}, \mathbf{E} = \frac{\mathbf{H} \times \mathbf{k}}{\omega \varepsilon - \mathrm{j}\sigma}$		
forward&backward	$E_x(z,t) = E_x^+(z,t) + E_x^-(z,t)$ $H_y(z,t) = H_y^+(z,t) + H_y^-(z,t)$ $\frac{E_x^+}{H_y^+} = \sqrt{\mu/\varepsilon} \approx \eta, \frac{E_x^-}{H_y^-} = -\sqrt{\mu/\varepsilon} \approx -\eta$		
velocity	$\mathbf{k} = \frac{2\pi}{\lambda}\hat{k} = \sqrt{\omega^2\mu\varepsilon}\hat{k}, v = \frac{1}{\sqrt{\mu\varepsilon}}$		
energy	$w_e = \frac{1}{2}\varepsilon(E_x^+)^2 = \frac{1}{2}\mu(H_y^+)^2 = w_m$ $S^+(z,t) = vw\hat{k} = v(w_e + w_m)\hat{z}, \langle \mathbf{S} \rangle = \frac{ \mathbf{E} ^2}{2\omega\mu}\hat{k} = \frac{E^2}{2\eta}\hat{k}$		

when $\sigma \neq 0$ (with loss), $k = \beta - j\alpha = \sqrt{\omega^2 \mu \varepsilon - j\omega \mu \sigma}$, intrinsic/ wave impedance $\eta = \frac{\omega \mu}{k} = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1 - j\frac{\sigma}{\omega \varepsilon}}}$

5.2 Polarization

linearly polarized E_x, E_y in phase $(\theta_x = \theta_y)$. **E** is sinusoidal elliptically polarized right-handed, E_x leads; left-handed, E_x lags. **E** is spiral circularly polarized right-handed, E_x leads by $\pi/2$; left-handed, E_x lags by $\pi/2$. **E** is spiral

5.3 Dispersion

To \mathbf{E}, \mathbf{H} at high freq., media parameters change, \mathbf{P}, \mathbf{M} and charge movement lag. The loss of a medium is measured by \mathbf{loss} $\mathbf{tangent}$

$$\tan \delta_e = \frac{\varepsilon''}{\varepsilon'}, \varepsilon = \varepsilon' - j\varepsilon''$$
$$\tan \delta_m = \frac{\mu''}{\mu'}, \mu = \mu' - j\mu''$$

5.4 Velocities

In dispersive media (where the phase velocity varies with freq.), the group velocity may differ from the phase velocity.

phase velocity	group velocity	
of a point of const. phase on the	of the envelope of the wave; of en-	
wave; of carrier	ergy propagation; of modulation	
$v_p = \frac{\omega}{\beta}$	$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}\beta} \le v_p$	
$v_p v_g = \frac{1}{\mu \varepsilon} = c^2 / / v_p = v_g$ when no dispersion (e.g. in dielectric)		

5.5 Guided waves

For ideal conductors, power is transmitted via fields and not through the conductors themselves; for loss conditions, power in the conductors is lost as heat. classification: TEM-type lines (coaxial cable, microstrip line, stripline), non-TEM lines (waveguides)

rectangular waveguide single conductor -> no TEM mode The mode is cutoff when $k=k_c^{mn}$

$k_c^{mn} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$	$E_z = 0$
$f_c^{mn} = \frac{1}{2\sqrt{\varepsilon\mu}}\sqrt{(\frac{m}{a})^2 + (\frac{n}{b})^2}$	$H_z = A\cos\frac{m\pi x}{a}\cos\frac{n\pi y}{b}e^{-j\beta z}$
$\beta, k_z = \sqrt{k^2 - k_c^2}$	$E_x = \frac{j\omega\mu n\pi}{k_c^2 b} A \cos\frac{m\pi x}{a} \sin\frac{n\pi y}{b} e^{-j\beta z}$
$\lambda_g = \frac{2\pi}{\beta}, v_p = \frac{\omega}{\beta}$	$E_y = \frac{-j\omega\mu m\pi}{k_c^2 a} A \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{-j\beta z}$
$Z_{TE} = \frac{k\eta}{\beta}$	$H_x = \frac{j\beta m\pi}{k_c^2 a} A \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{-j\beta z}$
$Z_{TM} = \frac{\beta\eta}{k}$	$H_y = \frac{j\beta n\pi}{k_c^2 b} A \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} e^{-j\beta z}$

cavity resonator When a mode (standing wave) can exist at the resonant frequency, it traps energy at that frequency.

$$f_{mnp} = \frac{1}{2\sqrt{\varepsilon\mu}}\sqrt{(\frac{m}{a})^2 + (\frac{n}{b})^2 + (\frac{p}{d})^2}$$

6 Transmission Line Theory and Network Analysis

wave impedance $Z_{\omega} = E_t/H_t$, e.g. $Z_{\text{TEM}}, Z_{\text{TM}}, Z_{\text{TE}}$

characteristic impedance $Z_0 = V^+/I^+$, unique for TEM wave, varyingly for TE and TM waves

short circuit: $V_i^+ + V_i^- = 0$; open circuit: $I_i^+ + I_i^- = 0$ Z_{ii} input impedance seen looking into port i $S_{ii} = \Gamma_i, S_{ij} = T_{ij}$ when matched

$$P^+ = \frac{1}{2}V^+I^{+*}, P_{avg} = \frac{1}{2}\Re\{[V]^T[I]^*\}$$

6.1 Scattering Matrix: Incident and Reflected Voltage

At high freq. measurements involve the magnitude and phase of a wave traveling in a given direction or of a standing wave.

$$[V^-] = [S][V^+], [S] = ([Z] + [U])^{-1}([Z] - [U])$$

 $S_{ij} = \frac{V_i^-}{V_j^+}|_{\Gamma=0}$: driving port j with an incident V_j^+ , all other ports matched to avoid reflections $(V^+=0)$, measure the reflected wave amplitude V_i^- at port i

7 Communication Systems

7.1 Antennas

A transmitting antenna is a device that converts a guided electromagnetic wave on a transmission line into a plane wave propagating in free space. Antennas are bi-directional and can be used for both transmit and receive functions. Near field: reactive, depends on r; far field: radiating,

independent of r.

macpenacii oi 1.		
bandwidth	BW	VSWR < 1.5
far-field distance		$R_{ff} = \frac{2D^2}{\lambda}$
radiation pattern	field	$F(\theta, \phi) = \frac{ \hat{E}(\theta, \phi) }{E_{\text{max}}}$
(far field, normalised)	power	$P(\theta, \phi) = \frac{S(\theta, \phi)}{S_{\text{max}}} = F(\theta, \phi) ^2$
$\mathbf{E} = (\hat{\theta}F_{\theta} + \hat{\phi}F_{\phi})e^{-jk_0r}/r, \eta_0 = E_{\theta}/H_{\phi} = -E_{\phi}/H_{\theta}$		
$P_{rad} = \oint_S U(\theta, \phi) ds, P_r = G_r A_{eff} S_{avg}, S_{avg} = \frac{G_t P_t}{4\pi r^2}$		
directivity	main beam average	$D(\theta,\phi) = \frac{U_{\text{max}}}{U_{\text{avg}}} = \frac{4\pi U_{\text{max}}}{P_{rad}} \le \frac{4\pi A}{\lambda^2}$
radiation efficiency	resistive loss	$\eta_{rad} = \frac{P_{rad}}{P_{in}} = 1 - \frac{P_{loss}}{P_{in}}$
gain	directional isotropic rad.	$G = \eta_{rad}D$
effective aperture area	$\frac{P_L}{P_{in}}$	$A_{eff}(\max) = \frac{\lambda^2}{4\pi}D$
antenna noise temp.	noise delivered	$T_A = \eta_{rad} T_B + (1 - \eta_{rad}) T_P$
(SNR)		$G/T(dB) = 10 \log (G/T_A)dB/K$

7.2 Noise

thermal noise(thermal vibration of bound charges), shot noise (random fluctuations of charge carriers), flicker noise(1/f noise, varies inversely with frequency), plasma noise, quantum noise

$$P_n = \frac{V_n^2}{4R} = kT(BW), \quad T_{eq} = \frac{N_o}{Gk(BW)}, \quad NF = \frac{S_i/N_i}{S_o/N_o} = 1 + \frac{T_e}{290K}$$

$$T = T_{eq1} + \frac{T_{eq2}}{G_1} + \frac{T_{eq3}}{G_1G_2} + \cdots, \quad NF = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3}{G_1G_2} + \cdots$$

when matched $G_{21} = |S_{21}|^2$, $NF = 1 + \frac{1 - G_{21}}{G_{21}} \frac{T}{T_0}$

7.3 Link Budget

transmitted antenna line loss	$L_t = \alpha$
path loss	$L_0(\mathrm{dB}) = 20\log\left(4\pi r/\lambda\right) > 0$
atmosphere attenuation	L_A
receive antenna line loss	L_r
receive power	$P_r(dBm) = (P_t + G_t + G_r) - (L_t + L_0 + L_r)$
impedance mismatch loss	$L_{\rm imp}({\rm dB}) = -10\log(1 - \Gamma ^2) \ge 0$
link margin	$LM = P_r - P_r(mim)$

The Friis Formula For long distance comm, wireless radio links better than wired links TL.

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi r}\right)^2$$
, Effective Isotropic Radiated Power = $P_t G_t$

For given freq., range, G_r , the received power is proportional to EIRP of the transmitter, which can only be increased by increasing P_t or G_t .

$$T_{TL+r} = (L_t - 1)T_P + L_t T_r,$$

$$\frac{S_o}{N_o} = \frac{S_i}{k(BW)(\eta_{rad} T_B + (1 - \eta_{rad})T_P + (L_t - 1)T_P + L_t T_r)}$$