1 Terminology and Definition

class terminology definition properties*
$oE-dl=0
conservative VxE=0 =irrotional /potential field
field property E=-VV
$sE-ds=0
solenoidal V-E=0 =source-less/tubular
V2V =0
uniquely defined both Vx and V- defined
eloctric field electrostatic field | D =cE =¢)E+ P VIV = -2
(conservative) steady current field J=0E ViV =0
) induced field Ejq = —% non-conservative, tubular
H(llglrllﬁ:_cliil)d magnetostatic field | H = % = % -M | V2A =—uJ, VU, =0
time-varyin, ¢ .
electric&magr}lletig(;: field E=-VV- % interdependent
plane wave ExH=k far from radiating source
plane waves | uniform plane wave E(z), H(x) uniform borderless media
TEM orthogonal
TE mode EOz =0 TElO, TEQ(), TEOl, TE11 .
. TM mode HOz =0 TMll,TMgl, .
guided waves degenerated modes | TFE,,, and T M,,,
TEM E2=~24+k>=0 EHLE
reciprocal (1), €], [Z], [Y], [S] symmetric
network [Z],[Y] purely imaginary, [S]7[S]* = [U]
lossless . o
no R or G, reflection = incidence
port Vi=VE+ V- \ incidence-reflection
2 Time-Invariant Fields
2.1 Electrostatics
formulas form expression
Coulomb’s law Fio = Flg qu%q; P19
electric field def E=Y =4
def E=-VV
electric potential | cal. | AVy =— [['E-dl
point Vo = =

2.2 Steady electric current

formulas form expression
current density def J=pv=0E
current def I=[J-ds=[Js-dl
diff V-J=-% =9
Equation of Continuity int $oJ-ds= [, — da’)t“ dv=0
homo medium V-E=0&VV=0
, diff J=0E
Ohm’s law low freq. V =RI
diff P=J-E
Joule’s law int P=[,J Edv
low freq. P=1V




2.3 Magnetostatics

formulas form expression
force dF =1d{ x B
magnetic dipole | approx
magnetic moment def m = [An = NIA
magnetic torque def T=mxB
Biot-Savart law dB = A p = D04
eq. VZA = —ppd
. cal. A=L7] Jd— L7 Jdv
vector potential =B dm ]fgczrv ~ A fV r
dp = fc A -d¢
scalar potential def H = 7VDOU"”
(current-less) munf Um(P), =Jp H-dl
eq. VU, =0

2.4 Charge/current distributions and their fields

wire E=2 B =1L
infinite plane E= 21 B=1%&
long solenoid By, = unl
toroid B;, = ‘57]:7
. o Qx o IR?
ring E= teeimpr | B=smiopn

3 Time-Varying Fields

using FT, we have .
E(r,t) = Re{[E,(r)d, + E,(r)a, + E.(r)a.]e"'}
= Re[E( )el“]

where E(r) = E,(r)a, + E,(r)a, + E.(r)d, Complex amplitude and complex vector depend on
position r and are time-dependent; Transient field vector and components are real functions.

3.1 Summary: Maxwell’s equations

electric Gauss’s law ilf fs Dvd:) ::f‘p/vpvdv
. , diff V-B=0
magnetic Gauss’s law " fs B.ds=0
diff VxH=J,+2
Ampere’s loop law int $oH-dl = [ (T, +2) ds
FT VxH=J,+jwD
diff VXE*——Jer(va)
Faraday’s law ot =9 E-dl = dt < JsB-ds
(induced + motional emf) =—[;8 ds+ 4, (vxB) dl
FT V xE=-jwB
Lorentz force F=¢(E+vxB)

3.2 Constitutive relationships

Constitutive equations (linear, homogeneous, and isotropic medium) are given in sectionl. How to
calculate (equivalent) bound charge/current?

polarized . P Db S, Q psb =P -1
dielectric V(p) = 4”50 (§5 &ds + [y, £ dv) V,Q| pu=-V-P
magnetized y va T S, T [ Jns=Mxn
material A= f dv + fS i ds) V.1 | J,=VxM
eq. magnetic 1 Pms - S,Q | pms=M-n
charge Un = 4m (§S T ds + jV T d’U) V’ Q Pm = -V-M




3.3 Boundary conditions

ANALOGY D&J
displacements D J free charge
related to electrostatic | steady current
definition D=c¢cE J=0E
Ps = Dyp1 — Dia
boundary conditions Dn1 = Dna In1 = Jn2 =Jn(Z—2)
En = Ep
MAGNETIC FIELD&POTENTIAL
magnetic H Um, A free current
boundary conditions Hi = HtBQM — ézrzltmuous :J%i ?Iflll_,[ﬁ;
ELECTRIC-MAGNETIC COUNTERPARTS
flux density D flux intensity B
field intensity E field intensity H
polarization P magnetization M = ZAT

When is there free charge/current at the boundary?

Perfect Conductor (0 = 0o, = 0) inside, electromagnetic fields E = B = 0; on its surface, both
ps and Js can exist, E || 7 and H L 7.

A Conductor (0 < co,e =0) inside, time-varying fields can exist; hence J; = 0, but p, can exist
between a conductor and a perfect dielectric.

Two Perfect Dielectric (o =0,¢) J; = 0. However, ps = 0 unless the charge is physically placed
at the interface.

Ferromagnetic (u = c0)

3.4 Energy& Work

E W =qAV = fv %vadv
energy densities We = %D E= %5E2

A
Wy, = %B~H = guhﬂ
dif [ V- (ExH)+J-E+H-Z2+E-22 =0
in homogeneous, isotropic medium |}
int | §S-ds+ [, I-Edv+ 2 [1 (wm +we)dv=0
(S}:fTSdt:ﬂ%{%Exfl*}
FT _ E|I:I|2 LI? |E|2 _cv?

Poynting’s theorem
(energy conservation)

£
4

More about Poynting’s theorem:
1. Poynting vector S = E x H, represents the instantaneous EM power crossing the closed
surface S. If this integral is positive, the net power is flowing out of the volume; flowing in if

negative.

2. E - J represents the power supplied to the charged particles by the electric field. When positive,
the field is doing work. In a conductor, J = ¢E, this term represents power dissipation or
ohmic power loss (Joule loss, mostly heat).

3. —%—“tj represents the change rate of stored magnetic/electric energy. For static field this term
equals 0.

4 Solving for potential

for static fields,



Poisson eq | V2V = -2 VA = —puJ
Laplaceeq | V2V =0 V2U,, =0
N
cartesian U,y 2) = 3 Xul@)Ya(y) Za(2)
n=1
19 v 10°v | 2’V _
L (055) + kG + 5 =0
cylindrical 00
U=R(p)®(¢) = (Ao+Bolnp)+ ) (Anp" + Bup™")(Cosinng + Dy cpsng)
n=1
1.0 ou 1 9oU ’U _
2 or (sz) + r2sinf (Sln 87) r2sin2f g2 — 0
spherical 0 9
U(r,0) = nZ:O (Apr™ + Br~ ") P, (cos ), where |P, (cosf)|*> = RSN
for time-varying fields,
transient complex
. . B=VxA B=VxA
Dynamic Potential E= vV E— VJ(WVM?) iwA
Lorentz gauge V-A=—p” m V-A=—-jwueV
=-2 V2V + w?ueV = -2
Darren Bell e S e
d VQA el 6752 = —uJ V2A + w?ueA = —puJ
2 25
Helmholtz Equation | V2E = puo28 dt + e I;: V2£§ + k2E_, =0
(source-less region) | V2H = puo % 4 pe olu VZH +k"H =0
ot ot? k2 = w‘u(wg — JU)
5 EM Waves
5.1 Plane waves
when o = 0 (lossless) we have k = ﬁ w?pe
2 N
dc}f; = e @ﬁ ) E= e
wave equation S NE o E.(2)= EIfe—.'l(kZ—‘ga;f) + Epei(kzt0a)
Ey(z,t) = Eypcos(wt — kz + 0,f) + Eqyp cos(wt + kz + 04p)
orthogonality ExH=kH= kwxf, = ;:f;;
E.(z,t) = Ef(2,t) + E, (2,t)
forward&backward . Hy(z,t) = Hf (2,t) + H, (2,1)
foh By _ -
HE = VRERN, g == ufe s )
velocity k :l%k = ;/wgluek, v :2 \/175
energy e :ﬁg(E;) = puHy)" = U];"; . 2
S+ (z,1) = vwk = v(we + w2, (8) = Bk = £
when o # 0 (with loss), k = 8 — ja = \/w?ue — jwpo, intrinsic/ wave impedance n = “F = —x u/e

5.2 Polarization

linearly polarized E,, E, in phase (6, =46,). E

is sinusoidal

elliptically polarized right-handed, F, leads; left-handed, F, lags. E is spiral

circularly polarized right-handed, F, leads by 7 /2; left-handed, E, lags by 7/2. E is spiral

5.3 Dispersion

To E,H at high freq., media parameters change, P, M and charge movement lag. The loss of a
medium is measured by loss tangent

tand, = —,e =&’ —je’

1

tan §,, = u—/,u:
0

! s 1
p=ip




5.4 Velocities

In dispersive media (where the phase velocity varies with freq.), the group velocity may differ from
the phase velocity.

phase velocity group velocity
of a point of const. phase on the | of the envelope of the wave; of en-
wave; of carrier ergy propagation; of modulation
vp =% v, = W <y
/3 9 — dg P
Uplg = E ¢*/ /vy, = vy when no dispersion (e.g. in dielectric)

5.5 Guided waves

For ideal conductors, power is transmitted via fields and not through the conductors themselves; for
loss conditions, power in the conductors is lost as heat. classification: TEM-type lines (coaxial
cable, microstrip line, stripline), non-TEM lines (waveguides)

rectangular waveguide single conductor -> no TEM mode The mode is cutoff when k = k*"

= O T () B =0
fmn = 2\}@\/(%)2 + (%)? H, = Acos I cos "7l e=iP=
Bk, = \/k2 — k2 E, = Jug;Zﬂ—ACOS ML gin 2 e~d0%
Ag = ﬁ 5 Up =% E, = 7_]:5"””/15111 ML cos Ml e =102
ZTEf% H, = Jgé’;”Asin%cos% e IPz
Zrym = %’7 H,= Jlfglb”Acos Z gin M =iz

cavity resonator When a mode (standing wave) can exist at the resonant frequency, it traps
energy at that frequency.

1 m,, n., Dy,
fonn = 57| 2P+ (2 B)



6 Transmission Line Theory and Network Analysis

i(z,t) i(z+ Az t)
A 0 propagation = attenuation + phase 1Rbr
z z
i return loss RL = —20log|T,| dB €0, ]
(2t 3 )(z+ Az, t
G0 Gazg CAZT ( ) voltage standing wave ratio VSWR =
transmission coefficient T=1+T=1+
Telegrapher's Equations
o o av lossless case (R=G=0) insertion loss IL = —20log|T|dB
E=—Ri—L$ E=_(R+iﬂ’L)’ propagation const. y =v/(R+ jwL) (G + jwC) =a+ jB 1 Np =10loge” =38.68589dB
trans. freq. 2m ;
o 7_Cﬁ dr _ —(G+jwl)V phase const. f = T =evLe guided wavelength A,
A¢
0z ot dz @ 1 1 Quarter-Wave Transformer
8 decouple phase velocity v, = =——=— \ | nh
oo o0 oo "B WIe W 1=+ e =202,
5 —(RC)zv—(RC+LG)——LC(—,)=0 v vy R+jwl  [I . .
0z" ot ot* characteristic impedence — =— —>=7,=,[~——= [ transform Z, in an inverse manner
&V [ I G+jwC V¢
5 =(R+jwL) (G+ jwC)V=(2Y)V =9V v )
dz* ¢ i reflection coefficient I'(z) =T'(~1)= +(Z) =r(0)e™®"
8 solve Vi)
V()= Ve + Vet = Ve e b 4 Vet
ot (zt)=Re{V(z)e"" ¥ (wt—Bz+¢)
[AUEEHERSE e W

r=r(-)=r(o)e™"

Z,=2(-1)=

0, no reflected wave

1 1 fval?
P(z)=ERe(VI'>=ERe{ 7 (1+l',uz”’:)(1—(]',L'Z”’:)')}
1|vE]? .. 2 ey VI
~2 A=ne) = 7 (=Irl)

intrinsic impedance n = \/u/e of medium material, equals Z,, for plane waves

wave impedance Z, = E;/H;, e.g. ZteM, ZTM, ZTE

characteristic impedance Zy = V*/I", unique for TEM wave, varyingly for TE and TM waves

short circuit: V,;* 4 V;~ = 0; open circuit: I;" +1; =0
Z;; input impedance seen looking into port ¢
Sii =1y, 8 = Ti; when matched

1 * 1 *
Pt = 5V+I+ s Povg = 5aaz{[V}T[I] }

6.1 Scattering Matrix: Incident and Reflected Voltage
At high freq. measurements involve the magnitude and phase of a wave traveling in a given
direction or of a standing wave.

V=181V 8] = (2] + [UD) (2] - [U])

S = i

‘;l; |[r=o: driving port j with an incident Vj+, all other ports matched to avoid reflections
J
VT =0), measure the reflected wave amplitude V.~ at port i
K3



7 Communication Systems

7.1 Antennas

A transmitting antenna is a device that converts a guided electromagnetic wave on a transmission
line into a plane wave propagating in free space. Antennas are bi-directional and can be used for
both transmit and receive functions. Near field: reactive, depends on r; far field: radiating,
independent of 7.

bandwidth BW VSWR< 1.5
far-field distance Ry = 21;2
radiation pattern field F(0,¢) = W

(far field, normalised) power P, ¢) = w = |F(0,9)]

ma

E= (9F9 T ¢F¢)e—jk0r/,’ﬂ’ o = EQ/H¢ = —E¢/H9
Prad = $U(0,8)ds, Py = GrAcsrSavg, Save = St

directivity e | D(0,0) = Foue = Tfues <
radiation efficiency resistive loss Nrad = % =1— Doss
gain o G = traaD
effective aperture area fo Acsf(max) = 2D
Pin ?ff 4
antenna noise temp. noise delivered Ta = radTs + (1 — nrad)Tp
(SNR) G/T(dB) = 10log (G/T4)dB/K
7.2 Noise

thermal noise(thermal vibration of bound charges), shot noise (random fluctuations of charge
carriers), flicker noise(1/f noise, varies inversely with frequency), plasma noise, quantum noise

V2 N, SN T,

P,=-2=kT(BW), Tyy=———-, NF-= =1 =
4R ( ) 4 Gk(BW) So/N, + 290K
Tovy  Tous NFy,—1 NF;
T="T, 1 2 -+, NF=NF
TG e T e TaG,
when matched Ga; = \521\2, NF =1+ 12:?121 Tlo
7.3 Link Budget
transmitted antenna line loss Li=«
path loss Lo(dB) = 201log (47r/X) > 0
atmosphere attenuation Ly
receive antenna line loss L,
receive power P.(dBm) = (P, + G+ G,) — (Lt + Lo + L)
impedance mismatch loss Limp(dB) = —101log(1 — [T']?) > 0
link margin LM = P, — P.(mim)

The Friis Formula For long distance comm, wireless radio links better than wired links TL.
A \2
P. = P,G,G, (4) ,  Effective Isotropic Radiated Power = P,G,
wr

For given freq., range, G,., the received power is proportional to EIRP of the transmitter,
which can only be increased by increasing P; or Gy.

Triyr = (Ly — 1)Tp + LT,
So S

No k(BW)(nradTB + (1 - 777'ad)TP + (Lt - l)TP + LtTr)




